
Design and implementation of an
FPGA based Digital Correction

and Calibration system for a high-
resolution low power pipeline ADC

for space applications

by
Markus Redelstab

Diplomarbeit Fachbereich EIT Nachrichtentechnik
FH Karlsruhe � University of Applied Sciences

Prof. Dr. Bantel, Prof. Dr. Sapotta
developed at Lawrence Berkeley Lab

2004/2005

ABSTRACT

CRIC (CCD Readout IC) is a 13bit, four channel, low noise, low power pipeline ADC for
CCD applications. To process readout data and to get relevant performance benchmarks, a
measurement setup had to be developed that is flexible in design and capable of providing the
following functions:

• Pattern generation and timing of all internal and external switches during ADC
operation within a fixed timing scheme of 10µs-cycles with
400 time slots of 25ns, i.e. foper = 40MHz

• Simultaneous acquisition of measurement data from all four channels

• Deserializing of ADC output (4×LVDS input to FPGA)

• UART interface for communication with a serial terminal

• Receiving of commands to adjust and control CRIC

• Sending of measurement related information, like calibration constants

• Digital Correction and Calibration in real-time

• Output of processed ADC data on a time multiplexed 32bit bus

Since most of the mentioned operations rely on certain timing schemes and since part of the
signals is LVDS, the use of an FPGA is the ideal solution to perform these tasks. Thus all
functions are realized on a Xilinx Spartan II-E with 200kGates, which meets all of the above
requirements. The FPGA board is attached as a daughterboard to the CRIC test circuit via two
140pin high-density connectors. The daughterboard is connected with a serial cable to a PC
running special test software to control CRIC during operation, while a PCI I/O card receives
ADC output data and sets onboard DACs when testing the ADC inputs. The core function of
the design is to apply Digital Correction and Calibration to all measurements which was
initially done by the test software too. Furthermore it was used to gain measurement data like
noise, linearity (DNL / INL) and crosstalk of CRIC. The proposed VHDL design is supposed
to be implemented hard-wired and on-chip in the next CRIC version.

Table of Contents

Table of Contents
1 Introduction...6

1.1 SNAP � SuperNova / Acceleration Probe...6
1.2 CCD...7
1.3 CRIC-II overview..8
1.4 Core specifications..9

2 Analog signal processing...11
2.1 Noise sources...11

2.1.1 Output amplifier noise...11
2.1.2 Reset noise...12
2.1.3 Shot Noise..12
2.1.4 Conclusion...12

2.2 Correlated Double Sampling (CDS)..13
3 Typical ADC architectures..14

3.1 Comparison of current ADC technologies..14
3.2 ADC speed versus resolution..15
3.3 Advantages of Pipeline ADCs...15

4 Pipeline ADCs...16
4.1 The ideal Pipeline ADC...16

4.1.1 Architecture..16
4.1.2 The 1bit cell...17

4.2 The non-ideal Pipeline ADC...17
4.2.1 Conversion errors...17
4.2.2 Architecture..18
4.2.3 Correction logic...19
4.2.4 Conclusion...19

4.3 CRIC-II digital block..20
4.3.1 Architecture..20
4.3.2 The 1.5bit cell...20
4.3.3 Digital correction logic...21

5 Digital error correction methods...22
5.1 Digital Correction of 1.5bit cells in a 13bit ADC..22
5.2 Digital Calibration of 1.5bit cells in a 13bit ADC...22

5.2.1 Theory..22
5.2.2 Calibration process of CRIC-II..24

6 Hardware setup..27
6.1 CRIC input and output signals..27

6.1.1 Pin assignment...27
6.1.2 Signal standards...30

6.2 CRIC-II test board...31

- 3 -

Table of Contents

6.3 FPGA board...31
7 FPGA design implementation...33

7.1 Design overview..33
7.2 Timing diagrams..34
7.3 Design considerations..37

7.3.1 Pattern generation:...37
7.3.2 Storage of calibration constants...37

7.4 State machines...38
7.5 Subcomponents...38
7.6 State charts..39

7.6.1 Overview..39
7.6.2 Main state machine (SST)...40
7.6.3 Pattern state machine (PST)...48
7.6.4 Configuration state machine (CST)...48
7.6.5 Calculation of calibration constants state machine (DST)....................................49
7.6.6 FST: Final value state machine:...50

7.7 Design process and synthesis with Xilinx ISE..51
8 Measurements...52

8.1 ADC specifications..52
8.1.1 INL: Integral Non-linearity..52
8.1.2 DNL: Differential Non-linearity..53

8.2 INL measurements...54
8.3 DNL measurement...55
8.4 Noise measurement...56
8.5 Statistical evaluation of the calibration constants...57

9 Conclusion and future upgrades..58
9.1 Meeting the specs..58
9.2 The way to CRIC-III..58

10 Appendix...59
10.1 VHDL code documentation...59

10.1.1 Pattern generation � Calibration � Main Control..59
10.1.2 ADC Digital Correction...69
10.1.3 Binary to Hex Transcoder..70
10.1.4 RAM 256x16...71
10.1.5 RAM 512x16...72
10.1.6 Mini UART..73

10.2 Example: Synthesis of Digital Correction...74
10.3 List of figures..76
10.4 List of Tables...78
10.5 Further information...78
10.6 Glossary...79

- 4 -

Table of Contents

10.7 Acknowledgments...82
10.8 References...83

- 5 -

Introduction

1 Introduction

1.1 SNAP � SuperNova / Acceleration Probe
By observing distant, ancient exploding stars it is possible to determine that the universe is

expanding at an accelerating rate. Right now, the most reasonable explanation for these
observations is the existence of a mysterious, self-repelling property of space first proposed by
Albert Einstein, which he called the cosmological constant. This surprising discovery that the
expansion of the universe is accelerating, and therefore is likely to expand forever, is based on
observations of type 1a supernovae, very bright astronomical "standard candles" that all have
the same intrinsic brightness. With these exploding stars you can derive the distance from
their measured brightness and by comparing the distance of these exploding stars with the red
shifts of their home galaxies, you can calculate how fast the universe was expanding at
different times in its history. Good results depend upon observing many type 1a supernovae,
both near and far.

The recent strategy to find these supernovae is to make images of 50 to 100 patches of sky,
each containing roughly a thousand distant galaxies. Three weeks later the same patches are
imaged again. Supernovae occurring anywhere in these fields show up as bright points of
light. This procedure was developed in the 1990s by Supernova Cosmology Project member
Gerson Goldhaber and is called "supernovae on demand". But to be able to do further and
more precise research on this subject, it would be very useful to find more supernovae so as to
avoid systematic errors providing the opportunity to examine them more precisely.

That�s why a space mission with a satellite is now being considered that would increase the
discovery rate for such supernovas to about 2000 per year. This satellite called SNAP
(Supernova / Acceleration Probe) would be a space-based telescope with a one square degree
field of view with 1 billion pixels. This implies exceptional CCDs that are very sensitive over
a wide range of wavelength, as well as readout electronics that have features like low noise
and low power together with high resolution and support for highly integrated circuit design.

- 6 -

Figure 1: SNAP satellite

Introduction

1.2 CCD
CCDs (Charge Coupled Devices) are silicon based and highly sensitive light detectors and

were first conceived in 1970 in the Bell Labs. They�ve got a large number of small light
sensitive areas (pixels) that convert photons to electrons. Whenever a photon hits a pixel,
there will be -depending on the energy- one or more electron-hole pairs. The potential in the
silicon is shaped in a way that these electrons get captured, just like in a bucket. So after a
certain exposure time the number of electrons collected will be directly proportional to the
intensity of the scene at each pixel.

Each column is connected to a vertical shift register x, that is connected to an horizontal
shift register y as well (see figure 2). If you now attach a clock signal to all columns, the
charge will begin to move down from one cell to the next and from the last cell at the bottom
into the horizontal shift register, just like in a bucket chain (figure 3). So each clock cycle for
reading one row is followed by x clock cycles to readout the horizontal shift register. Finally,
after repeating this procedure y times, the entire CCD is processed and the image scene can be
reconstructed.

- 7 -

Figure 2: CCD shift registers

Output

Pixels

Horizontal shift register

Vertical shift
register

x columns

y
ro

w
s

Figure 3: CCD charge coupling

O 3

O 1
O 2

C h a r g e c o l l e c t i o n : O 2 h i g h , O 1 a n d O 3 l o w

S e m i c o n d u c t o r

C h a r g e t r a n s f e r (c h a r g e c o u p l i n g) : O 2 a n d O 3 h i g h , O 1 l o w

O 3

O 1
O 2

O 3

O 1
O 2

C h a r g e t r a n s f e r (c h a r g e c o u p l i n g) : O 3 h i g h , O 1 a n d O 2 l o w

Introduction

1.3 CRIC-II overview
The core functions to readout the CCD are provided by CRIC-II (CCD Readout IC) ASIC

developed by the LBL IC design group. It comprises the following circuit blocks:

As explained in the preceding chapter, the CCD is read out by selecting a column (MUX)
and by clocking out the charge of all CCD wells into shift registers. Inside the amplifier the
charge is transformed via a sense capacitor CS into its corresponding voltage (U=Q/CS). Prior
to the A/D conversion the signal has to be low-pass filtered to toss all frequency components
outside Nyquist zone. Otherwise any (unwanted) frequency component would be aliased back
into the target zone and decrease SNR performance. The next stage represented by a CDS
circuit (Correlated Double Sampler) is used to reduce readout noise by correlating the signal
with its reset level. Depending on the input voltage the amplifier switches between several
slope rates to allow a good dynamic range. The final output is 4 channels × 26bit of
uncorrected and uncalibrated data, which has to be processed afterwards by a correction
circuit inside the FPGA to output 13bit effective data resolution.

On the next page you can see a photo of CRIC-II, which gives an idea of the four channel
symmetric block design:

- 8 -

 Figure 4: CRIC-II overview

 Integrator / CDS

1/s

Shift register

Vref

Clock generator

Differential signal

reset

signal

Clock generator

2bit slope information

26bit raw data
uncorrected & uncalibrated

13bit
4 channel

Pipeline ADC

2×

Gain control
Slope (1, 2, 32)

1/s
Correlated

signal

Amplifier:
single to differential stage

×2

to FPGA

Buffer

+–

CCD

C

VMUX

Charge of one well

Low passMUX

Introduction

1.4 Core specifications

Input amplifier:

• Gain: 2
• High input impedance
• Input voltage swing ±500mV
• Supply voltage: 3.3V
• Bandwidth >> 3.5MHz

Integrator:

• Covers full dynamic range: adjustable gain of 32, 2, 1
• Input voltage swing ±1V

CDS:

• CCD + CDS read noise: 4e- @ 100 kS/s, goal of 2e- @ 50 kS/s
• Pixel rate: 100 kS/s (50 kS/s for spectrograph) -10% readout dead time

- 9 -

Figure 5: CRCIC-II photo

13 stages pipeline ADC
4 channel symmetric

architecture

Amplifier + Integrator +
CDS

Introduction

ADC:

• 13bit resolution
• 13 pipelined stages
• 1.5bit/stage
• INL: ±0.5 LSB (after calibration)
• DNL: ±0.5 LSB (after calibration)
• ADC noise: 1 LSB
• Inter-stage gain: Slightly above two
• Thermometer to Binary transcoder
• Digital Correction
• Digital Calibration of first 8 MSB cells
• Fully differential
• Switch OTA architecture
• 4V full scale
• Large dynamic range: 96dB from noise floor to 130ke well depth
• Readout rate:100 kHz

Common requirements:

• Operation at 140K and room temperature
• Radiation tolerance: 100 krad TID (20 krad shielded by focal plane)
• Low power: mandatory for space application in general, very important for readout

electronics due to placement close to CCD
• Small footprint
• Highly integratable

- 10 -

Analog signal processing

2 Analog signal processing

2.1 Noise sources
Beside intrinsic CCD noise already implied in the CCD signal, there are several sources of

noise in the readout electronics. Specifically they are:

2.1.1 Output amplifier noise

White noise, also well known as Johnson noise which is determined by the Nyquist formula:
 Johnson=4 kTBR , where

k: Boltzmann�s constant [J/K]
T: temperature [K]
B: noise equivalent bandwidth [Hz] determined by the 3dB

bandwidth of the amplifier�s transfer function
R: output impedance of amplifier (1/gm for source follower)

This type of noise is usually Gaussian, additive and independent of the signal and occurs in
any resistor.
Flicker noise, also called 1/f noise since it is inversely proportional to frequency, is basically
produced by any kind of metal junction, i.e. in all MOSFETs of the amplifier. As you can see
in the following diagram, noise decreases as both temperature drops and frequency rises.

- 11 -

 Figure 6: Noise sources

RC

shift register

substrate

Vreset Vdd

GND

Vout

kT
C
 n

oi
se

4kT
BR + 1/f n

oise

Amplifier circuit

RG

Reset FET

Shot
Noise

SW

4kTBR

Figure 7: Flicker noise

1.E-09

1.E-08

1.E-07

1.E-06

1.E-05

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06

Frequency [Hz]

In
pu

t-r
ef

er
re

d
no

is
e

[V
/s

qr
t(H

z)
] 20C

0C
-60C
-120C
-140C

Analog signal processing

2.1.2 Reset noise

Whenever a charge is translated to a voltage, there's an uncertainty due to noise generated
by the channel resistance of the reset FET. This noise is also defined by the Nyquist formula,
but usually expressed in terms of electrons to compare it with the amount of electrons in the
wells of the CCD:

reset=4 kTBR and B=

2
⋅ f 0=

1
4 RC

=>

reset= kT
C

and Q=n⋅e=C⋅ ⇔ =n⋅e
C =>

ne=
C
e
⋅ kT

C
=kTC

e

That�s why Reset Noise is also often called kTC noise.

2.1.3 Shot Noise

Due to the unpredictability of time between two arrivals of electrons on a detector, this kind
of noise represents the absolute minimum noise level that could be achieved if any other noise
source could be eliminated. The time between two arrivals of photons is Poisson distributed:

=S , where

 S is the signal in electrons and
  means the noise in electrons resulting from this exposure.

2.1.4 Conclusion
However, the main noise sources on the CCD itself are photon noise and dark current.

They're strongly influenced by architecture and quality of the CCD on one hand and
temperature on the other hand. Optimization of architecture is subject of current research and
will achieve further noise reduction. Furthermore the discussed CCD application is supposed
to work at low temperature (140K), so particularly dark current is extensively reduced.

- 12 -

Analog signal processing

2.2 Correlated Double Sampling (CDS)
Read-out noise increases in proportion to read-out speed. The cost of going faster is more

noise and hence, more uncertainty in the voltage determination and lower number of bits of
resolution. So using a sample rate of 100kS/s is a compromise between operating at moderate
speed and having good accuracy by lowering the noise floor. To eliminate most parts of this
noise, a circuit called Correlated Double Sampler (CDS) is widely used. The name is derived
from the procedure applied to get the final (noise reduced) signal which correlates two
samples using the described time pattern. The following picture shows an oscilloscope
screenshot of the CCD readout signal during one sampling period:

The first integration sample (∆treset) is acquired to Vref = Qref/C at the end of the reset phase
(see ellipsoid integration area), whereas the second sample Vsignal=Qpixel/C is taken while the
CCD signal is switched active. Ideally, the two samples differ only by a voltage corresponding
to the transferred charge signal. This is the video level minus the noise Vout = Vsignal-Vref =
(Qpixel-Qref)/C. The CDS function will eliminate two major sources of noise, as they are kTC
noise and part of the White noise.

- 13 -

 Figure 8: CCD signal & double correlated sampling

CCD reset phase:
Amplifier off

(clamp)
Amplifier on

Video signal (0..500mV)
Reset level

= VRef

Summing well injection

Vref

Integration
treset

Vsig

Integration
tsignal

Typical ADC architectures

3 Typical ADC architectures

3.1 Comparison of current ADC technologies
To get a better understanding of ADCs, it is useful to know about the basic differences of

the major designs currently competing. The following table opposes their main characteristics
and demonstrates that each design has its benefits and disadvantages and makes it more or less
suitable for a particular application.

Flash SAR
(Successive
Approximation
Register)

Dual Slope
(integrating)

Pipeline Sigma Delta

Main features Sample rate up
to ultra-high
speed

Medium to high
resolution
(8 to 16bit),
5MS/s and
below,
low power,
small size

High resolution,
low power,
good noise
performance

High speed, up
to 100+ MS/s,
8bit to 16bit,
low power,
low noise

High resolution,
low to medium
speed

Conversion
method

n-bit lead to 2n-1

comparators,
of capacities
increase by a
factor of 2 for
each bit

Binary search
algorithm,
internal circuit
runs higher
speed

Unknown input
voltage is
integrated and
value
compared
against known
reference value

Small parallel
structure,
each stage
works on one to
a few bits

Oversampling
ADC,
5-Hz - 60Hz
rejection,
programmable
data output

Encoding
method

Thermometer
Code Encoding

Successive
Approximation

Analog
Integration

Shift register,
Digital Error
Correction logic
(DEC)

Oversampling
modulator,
digital
decimation filter

Dis-
advantages

Metastability
(sparkle
codes), high
power
consumption,
large size,
expensive

Speed limited
to ~5MS/s,
may require
antialiasing
filter

Slow conv. rate,
high precision
ext.
components
required to
achieve max.
accuracy

Parallel
structure
increases
throughput at
the expense of
power and data
latency

Higher order
n-bit ADC and
n-bit feedback
DAC,
may require
anti-aliasing
filter

Conversion
speed

Conversion
time does not
change with
increased
resolution

Increases
linearly with
increased
resolution

Conversion
time doubles
with every
additional bit of
resolution

Increases
linearly with
increased
resolution

Tradeoff
between data
output rate and
�noise free�
resolution

Size 2n-1comparator,
die size and
power
increases
exponentially
with resolution

Die size
increases
linearly with
increase in
resolution

Die size will not
materially
change with
increase of
resolution

Die size
increases
linearly with
increase of
resolution

Die size will not
materially
change with
increase of
resolution

Table 1: ADC comparison

- 14 -

Typical ADC architectures

3.2 ADC speed versus resolution
The diagram below illustrates the tradeoff between speed and resolution and shows the

typical operation areas of the major ADC architectures.

3.3 Advantages of Pipeline ADCs
As you have seen in the chapters before, Pipeline ADCs offer a very good balance of speed,

resolution, size and power dissipation. Thus, the Pipeline structure covers a wide range of
applications and is still the most popular design, even though it was invented in 1964 by T.C.
Vester and isn�t the latest ADC design. Among many other applications, CCD imaging is the
fastest growing segment, particularly driven by the increasing demand for imaging systems,
e.g. photo cameras. The available sampling rates vary from a few mega samples to more than
500 MS/s, which is the top speed segment among ADC designs and is only outperformed
significantly by Flash ADCs.

The most important advantages of Pipeline ADCs over the other competing designs
mentioned before are the very good noise performance and the low feedback from the digital
output to the (analog) ADC input. This is given by the ADC's timing scheme that has digital
transitions occurring only while the analog front-end is switched off. That's crucial since any
open back path would affect the input signal.

- 15 -

Figure 9: ADC speed vs. resolution

6

8

10

12

14

16

18

20

bit

100M10k 1M 10G1G100k1k 10M

Sample rate

Sigma Delta
and

oversampling converters

Flash
converters

R
es

ol
ut

io
n

Pipeline
ADCs

Pipeline ADCs

4 Pipeline ADCs

4.1 The ideal Pipeline ADC
To get into the basic concept of Pipeline ADCs it is useful to have a closer look at the

Pipeline structure in an ideal environment, i.e. without noise and offset. This way the ADC
design becomes fairly straightforward because there's no need for circuits additional to the
conversion electronics to handle these undesirable effects.

4.1.1 Architecture

The following diagram shows a k-stage Pipeline ADC with 1 bit resolution per stage and k
subranging cells:

Beginning with the MSB the analog input is sampled by a 1-bit (Flash-) ADC that gives the
result for stage k and is converted back by a DAC to calculate the residue for the next stage
(k-1). The result of this (analog) subtraction is transferred to a Sample&Hold circuit from
where it gets amplified (G=2) to refine the result by passing it to the next stage. That's where
the term pipelined architecture is derived from. It refers to the ability to process the data from
the previous stage, i.e. the data is transferred through the cells like in a pipeline. This
procedure continues to the last stage which examines the final residue and represents the LSB.
Since each cell provides 1 bit, the output logic is 100% transparent and simply comprises k
delay elements with paths of different length to synchronize all bits and to compose the final
conversion result.

- 16 -

Figure 10: Pipeline ADC with 1bit per stage

 1-bit ADC

1-bit DAC

G=2

Vin

+

–

Stage (k)

Residue

1-bit out for stage k To next stage
MSB LSB

S/H
 1-bit ADC

1-bit DAC

G=2

+

–

Vout

Residue

1-bit out for stage (k-1)

S/H

Stage (k-1)

k-bit output latch

Pipeline ADCs

4.1.2 The 1bit cell

The ideal transfer function for a 1bit cell is shown below:

After the binary decision is made (0=left negative side, 1=right side), the residue is passed
to the next cell to refine the conversion result by a factor of two and thus, to add an additional
bit of resolution. So if input values around U=0V are applied, i.e. if it is very hard to make a
decision to �0� or �1� and the associated uncertainty becomes ultimate, the residue will be
close to the conceivable maximum too. Unless there's no comparator offset and the inter-stage
gain is exactly G=2, the ADC operates smoothly. However, in real applications the ADC
circuit should be expected to have some offset and gain variations. This has certain
consequences and tradeoffs for the design, that will be discussed in the next chapter.

4.2 The non-ideal Pipeline ADC

4.2.1 Conversion errors

In first line ADC designers have to face offset and gain error due to charge injection and
capacitance mismatch, which occurs inside the comparators and amplifiers when switching
their inputs or during charge transfer respectively. That's an issue because if the residue of

- 17 -

Figure 12: Transfer function 1bit cell * offset

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Input from stage k in multiples of Vref

O
ut

pu
t t

o
st

ag
e

k-
1

(r
es

id
ue

)

0 1

0  V out=2⋅V inV ref

1  V out=2⋅V in−V ref

Figure 11: Transfer function 1bit cell

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Input from stage k in multiples of Vref

O
ut

pu
t t

o
st

ag
e

k-
1

(r
es

id
ue

)

Pipeline ADCs

stage k is close to the maximum input rating of stage (k-1) the additional offset voltage or gain
misalignment will saturate the stage. This effect is shown in figure 12.

Whenever the transfer function leaves the indicated area there's a loss of information
because everything outside is clipped off. The consequence for the ADC operation are jumps
in the quantization function which ultimately lead to missing codes on the digital output that
are absolutely fatal to any ADC design(see figure 13).

So there are two choices to eliminate this problem: To either prevent the occurrence of offset
and gain error (which is very expensive and hard to realize) or to make it tolerant to these type
of errors (which is more reasonable).

4.2.2 Architecture

The common approach to correct the mentioned errors is to add some redundancy to deter
saturation and thus loss of information. This is achieved by adding one or more comparators
to each cell to enlarge the dynamic range. Figure 14 illustrates these modifications.

- 18 -

Figure 13: ADC missing codes

Analog input

D
ig

ita
l o

ut
pu

t

Figure 14: structure n-bit ADC

 n-bit ADC

n-bit DAC

G=2

Vin

+

–

Stage (k)

Residue

n-bit out for stage k

k·n to k-bit correction logic

To next stage
MSB LSB

S/H
 n-bit ADC

n-bit DAC

G=2

+

–

Vout

Residue

n-bit out for stage (k-1)

S/H

Stage (k-1)

k·n-bit output latch

Pipeline ADCs

4.2.3 Correction logic

By adding redundancy with extra comparators, the output of each stage doesn't necessarily
represent a binary code any more. Depending on the applied coding method and according to
the number of bits per stage (n-bit ADC/DAC), the output has to be processed by a correction
logic to get a valid binary representation of the analog input. This involves two steps: First,
the intermediate code delivered by each stage, which is usually encoded using codes with a
small Hamming distance to avoid large errors (Gray, Thermometer, etc.) is translated to a
binary representation. Second, this binary representation is digitally corrected to get a binary
number as result of the entire A/D conversion. (see chapter 6.1)

 GRAY CODE BINARY CODE
0000 0000

HD=1: 0001 0001 HD≥1:
only one bit changes 0011 0010 at least one bit changes
between any two 0010 0011 between any two
adjacent codes 0110 0100 adjacent codes
→ Target error: 0111 0101 → Target error:at least
 one digit 0101 0110 one digit, likely more

0100 0111

Further improvements can be achieved by using a method called Digital Calibration. That's
one of the core tasks of the FPGA implementation. Hierarchically it is a subsequent operation
layer right after the Digital Correction. (see chapter 6.2)

4.2.4 Conclusion
Extra comparators bring redundancy and more dynamic range. The consequence is an

overlapping of the dynamic ranges, which prevents the occurrence of saturation due to offset
errors. So there's no loss of information any more. This is realized to the expense of extra
logic because the intermediate cell code has to be translated to a valid binary code. The
method of Digital Calibration is capable of achieving further error reduction and can be added
by implementing extra computation logic. After applying this last step of code correction all
redundancy is used and therefore removed. It has to be emphasized that only offset error can
be corrected, whereas negative gain error (G<2) cannot be corrected at all and has to be
avoided under all circumstances. Positive gain variation (G>2) can be tolerated to the expense
of slightly smaller residue range, i.e. for this case the maximum (Vref) isn�t reached any more.

- 19 -

CRIC-II digital block

4.3 CRIC-II digital block
The CCD as part of the imaging system is read out by a digitally corrected and calibrated

13bit Pipeline ADC with 1.5bit per stage. The following chapter describes this specific
architecture.

4.3.1 Architecture
Below you can see the final structure that was used to process all ADC output data:

Now, the error correction layer gains more importance since the extra redundancy has to be
processed by additional logic. Thus, in addition to figure 14 this layer is split in three sub-
layers, the first (Therm2Bin, see 4.3.3) is part of the CRIC design the last two (Digital
Correction and Calibration) are implemented in an FPGA.

4.3.2 The 1.5bit cell
The use of 1.5bit cells allows overlapping ranges and enough redundancy to circumvent

missing codes. The 1.5bit cell has three states (Thermometer code: 00,01,11) represented by
two comparators. So the term 1.5bit cell refers to the redundant usage of two comparators that
don't represent two, but 1.5bit:
For n comparators there are: a = 2n binary combinations, ergo it represents ld(a) bits:

a = 4 combinations → ld(4) = 2bit
a = 3 combinations → ld(3) ≈ 1.5bit

- 20 -

Figure 15: CRIC-II 13bit Pipeline structure

Digital Calibration: 13bit binary output

Digital Correction: 13×2bit binary to 13bit binary

1.5-bit out:
00
01
11

 1.5-bit ADC

1.5-bit DAC

G=2

Vin

+

–

Stage 13

Residue

13×2bit thermometer to 13×2bit binary code

11 subsequent stages
MSB LSB

S/H
 1.5-bit ADC

1.5-bit DAC

G=2

+

–

Vout

Residue

1.5-bit out:
00
01
11

S/H

Stage 12

26bit output latch

FPGAFPGA

CRIC-II digital block

The figure below shows the transfer function of a 1.5bit cell:

As indicated in figure 16 there's much more headroom for inter-stage misalignment now.
Offset and gain error can be as large as 0.5Vref before the stage exceeds the safe operation area.

4.3.3 Digital correction logic
As mentioned the correction logic includes three layers, the first (Therm2Bin) is part of the

CRIC design and is explained below. The layers underneath are not part of CRIC's digital
block and are realized in an FPGA.

Thermometer to binary transcoder

Before the code coming out of the stages is passed to the Digital Correction, it has to be
translated to a binary representation. The following table shows the allocation:

Thermometer Binary
00 00

01 01

11 10

 Table 2: Therm2Bin transcoding

Digital Correction and Calibration

Since Digital Correction and Calibration are both part of the FPGA implementation a
detailed functional description is given in the next chapter.

- 21 -

Figure 16: Transfer function 1.5bit cell

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Vin from stage k in multiples of Vref

V
ou

t t
o

st
ag

e
k-

1
(r

es
id

ue
)

00 01 11 00  V out=2⋅V inV ref

01  V out=2⋅V in0

11  V out=2⋅V in−V ref

Digital error correction methods

5 Digital error correction methods

5.1 Digital Correction of 1.5bit cells in a 13bit ADC
The Digital Correction works as follows:

Beginning with the MSB part of the first stage (bit1), the inter-stage summing starts from
right to the left. As result of the first summing operation a Carry bit is passed upward and
represents one of three inputs of the next cell's XOR gate. This process propagates up to the
last stage, so each gate output forms one bit of the final result.
Fore more details see Appendix 10.2: Synthesis of Digital Correction

5.2 Digital Calibration of 1.5bit cells in a 13bit ADC

5.2.1 Theory

Ideally, after Digital Correction and before Calibration with an inter-stage gain of exactly
G=2 there's the following situation at each stage output:

Due to the described 1.5bit cell architecture comprising three possible states there are also
three different offset value combinations for the current cell n. If the mid-range line gm is

- 22 -

 Figure 17: Digital Correction

Stage 13

bit25 bit24

Stage 12

bit23 bit22

Stage 2

bit3 bit2

Stage 1

bit1 bit0

Stage 3

bit5 bit4...

+++ ++

bit11 bit1 bit0...bit12

carrycarrycarry
+

carry

Not used
during

correction

bit10 bit2

Figure 18: Calibrated output Dout up to stage n-1 with G=2

gl

Vref/2-Vref/2

actual
Ideal &
calibrated

Vref-Vref

G = 2

Vin

Dout

output of all
stages up to
current cell

Error

[1..1]

[0..0]

gm gr

11

00

01

Decision levels for
current cell

Digital error correction methods

taken as a reference for the outer range lines gl and gr the overall actual line can be expressed
as follows:

Dout n={〈11〉Doffset

〈01〉
〈00〉−Doffset

}∑k=1

n−1

Dout k  ≡ {gl

gm

gr
} for

V in≥V ref /4
−V ref /4V inV ref /4

V in≤V ref /4

 with ∑
k=1

n−1

Dout k  as the digitally corrected output from stage 1 to n-1

Before applying Digital Calibration there's a gap between the actual (blue) and the ideal
(red) line and hence an error in the lower and upper range caused by comparator offset
(gl and gr → Vref/4>Vin>Vref/4). Since only the upper cells are calibratable and the number of
cells taken into account augments while moving up to the MSB cell (see chapter 5.2.2), the
length of vector Dout (in #bits) varies from n=#uncalibratable cells+1bit to n=13bit according
to the cell under evaluation.
To remove this error, Digital Calibration has to be applied: Depending on the state of cell n
(Dout(n)=00, 01 or 11) either a constant is added (Vin<-Vref/4) or subtracted (Vin>Vref/4) for 00
and 11 respectively. Subsequently, as indicated by the green (calibrated) line the ideal and the
actual line match.

As long as the inter-stage gain is steady the calibration process works fine. However, with
gain G < 2 the following problem occurs:

If gain drops below G = 2 the calibrated line indicates that the stage output might not reach
full scale [1..1] any more, which means that a code is skipped and therefore missing. So
negative gain variations (G < 2) are absolutely fatal to the design and have to be prevented in
any case. This is achieved by choosing a gain slightly above two, so it can never drop below.

Finally, there's the scenario in normal operation with gain slightly above two:
Now all codes are reached, there's just a small loss of resolution because the input voltage
range is reduced and the maximum output Dout is reached before Vin=Vref. Since this effect is
comparably small the associated gain variation has to be exaggerated to make it visible.
The following figure illustrates this:

- 23 -

Figure 19: Calibration with G<2 resulting in Missing Code

Vref/2-Vref/2

Ideal
actual Missing code

calibrated

Vref-Vref

G < 2

Vin

Dout [1..1]

[0..0]

Digital error correction methods

5.2.2 Calibration process of CRIC-II

CRIC has eight calibratable and five non-calibratable cells:

To correct the ADC output as shown in the previous chapter, two calibration constants have
to be determined for each cell prior to the regular ADC operation. So there are the following
steps to calculate these constants:

• First, four measurements given by the appropriate points in the 1.5bit cell transfer function
have to be obtained for each cell (see figure 22).

• Second, the differences of each two vertically adjacent points have to be calculated.
• And finally the gathered constants have to be stored to make them available for later

correction during all conversion cycles (the actual calibration).

- 24 -

Figure 21: Calibratable cells

Figure 20: Calibration with G>2, normal operation

Vref/2-Vref/2

calibrated

Vref-Vref

G > 2

Vin

Dout
ideal

actual

[1..1]

[0..0]

reduced
input range

Cell 13 Cell 12 Cell 11 Cell 6 Cell 5 Cell 4 Cell 1... ...

8 calibratable cells 5 non-calibratable cells

MSB LSB

Digital error correction methods

Figure 22 illustrates the measurement process:

To measure all indicted points of the transfer function each cell has the capability to be
controlled from outside by a control register (and hence by the calibration logic). So there are
several switches that represent the states each cell can have during operation. By using these
switches the cells can be forced to the indicated points TP1..TP4.

Bit# Function Bit# Function Bit# Function Bit# Function
1 Off8 16 CalMSB6 31 Off3 46 CalMSB1

2 CalVrefPlus8 17 CalLSB6 32 CalVrefPlus3 47 CalLSB1

3 CalVrefMinus8 18 Cal6 33 CalVrefMinus3 48 Cal1

4 CalMSB8 19 Off5 34 CalMSB3 49 Vpctrl drivers

5 CalLSB8 20 CalVrefPlus5 35 CalLSB3 50 CompsetM2 Ch4

6 Cal8 21 CalVrefMinus5 36 Cal3 51 CompsetM1 Ch4

7 Off7 22 CalMSB5 37 Off2 52 CompsetM2 Ch3

8 CalVrefPlus7 23 CalLSB5 38 CalVrefPlus2 53 CompsetM1 Ch3

9 CalVrefMinus7 24 Cal5 39 CalVrefMinus2 54 CompsetM2 Ch2

10 CalMSB7 25 Off4 40 CalMSB2 55 CompsetM1 Ch2

11 CalLSB7 26 CalVrefPlus4 41 CalLSB2 56 CompsetM2 Ch1

12 Cal7 27 CalVrefMinus4 42 Cal2 57 CompsetM1 Ch1

13 Off6 28 CalMSB4 43 Off1 58 Vpctrl Input amp

14 CalVrefPlus6 29 CalLSB4 44 CalVrefPlus1

15 CalVrefMinus6 30 Cal4 45 CalVrefMinus1

 Table 3: CRIC-II configuration register

The table above illustrates all settings of CRIC's global control register. The yellow marked
section stands for one group of adjustments that have to be controlled when taking
measurements for calculating the calibration constants.
For example, a measurement cycle for cell#7 is established with the following settings:

Off7 CalVrefPlus7 CalVrefMinus7 CalMSB7 CalLSB7 Cal7

1st measurement (TP1) 0 1 1 0 0 1

2nd measurement (TP2) 0 0 1 0 1 1

3rd measurement (TP3) 0 1 0 0 1 1

4th measurement (TP4) 0 1 0 1 1 1

 Table 4: Measurement sequence

- 25 -

Figure 22: Transfer points to measure

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5

Vin from stage k in multiples of Vref

V
ou

t
to

 s
ta

ge
 k

-1
 (

re
si

du
e)

00 01 11

 TP3

 TP4TP2

TP1

Digital error correction methods

The entire calculation procedure comprises the following steps:

• Start with cell#6
• All (MSB-) cells above are switched off (cell nc to cell#13).
• Force cell under calibration nc into four states as described in table4
• Acquire many measurements per point (~1000) and calculate average to reduce

white noise
• After measuring TP1 to TP4 two constants can be calculated:

 ∆1(cell nc)= TP1- TP2 and ∆2(cell nc)= TP3- TP4

• Measure next cell: nc=nc+1

After repeating this sequence eight times, 8×2= 16 constants are calculated and have to be
stored. The calibration is applied during any ADC acquisition cycle by following the decision
table below:

Cell state binary Calibration
00 Data - ∆1

01 Do nothing

10 Data + ∆2

Table 5: Calibration decision table

If a continuous and calibrated ADC acquisition is desired, the use of FPGA technology
seems to be ideal because all mentioned corrections have to be accomplished in real-time.
Furthermore there are fast FPGAs that support all necessary signal standards to control
CRIC-II and to process all readout data. The implementation of the procedures particularly
described in the previous chapter are explained in chapter 7.

- 26 -

Figure 23: Calibration 1st step

Cell 13 Cell 12 Cell 7 Cell 6 Cell 5 Cell 4 Cell 1... ...

8 calibratable cells 5 non-calibratable cells

LSBMSB

Cell under
calibration

Upper cells
switched off

Figure 24: Calibration 2nd step

Cell 13 Cell 12 Cell 7 Cell 6 Cell 5 Cell 4 Cell 1... ...

8 calibratable cells 5 non-calibratable cells

LSBMSB

Cell under
calibration

Upper cells
switched off

Hardware setup

6 Hardware setup

6.1 CRIC input and output signals

6.1.1 Pin assignment

As introduced in chapter 1.3 the CRIC chip design embodies all blocks to readout a CCD,
from input signal amplification to A/D conversion. To process four channels simultaneously
the entire signal processing is implemented four times in parallel. Below you can see the
CRIC pinout with the basic circuitry linked to these blocks:

The following table gives an overview of all CRIC-II signals with a short description.
Please note, that some signals are only for chip design test purposes and don't have a
particular functional background.

The most important signals are categorized in groups:
magenta=analog input, cyan=digital output, green=control pattern, yellow=configuration data

- 27 -

Figure 25: CRIC-II signals

A3.3V

AGND

A3.3V
DGND

D3.3V

AGND
D3.3V

AGND

A3.3V

AGND

Reference current
A3.3V

Reference voltage
AGND

AGND

DGND

VTH

Reference voltage

A3.3V

A3.3V

AGND

o DACs or AC coupling

AGNDAGND

(Strap to A3.3V)
(Strap to AGND)

A3.3V
AGND

AGND
A3.3V

CMOS level input
CMOS level input
CMOS level input
CMOS level output

Adjustable dig supply (0-1.65V)
Adjustable dig supply (1.65V-3.3V)

Digital output X4 (LVDS like)
Digital output b X4 (LVDS like)

To 16-bit DACs
(0.65V � 2.65V)

To analog readout

Straps

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

LVDS trans

VrefSampleHold

clamp

straight

start

intrst

read_S

comprstb_logic

compveto

ACon

clampR

SP

khi

ROclk

phi1

phi2

khitest

Hardware setup

Pin# Pin name Description Range
1 CONFIGOUT Serial output of configuration register (test) D 0 � 3.3V

2 GND Substrate gnd A 0V

3 COMPN3 Test integrator comp bias N3 (generated on chip) D -10uA

4 COMPIBP Comparator bias IBP (generated on chip) D -10uA

5 VDDBIAS Bias supply A 3.3V

6 AMPBIAS100KPIX Amplifier bias (generated on chip) A 5uA

7 INTBIAS100KPIX Integrator bias (generated on chip) A 5uA

8 SHCAPGND Bottom plate, GND on S&H cap on V165 A 0V

9 SHCAP Top plate on S&H cap on V165 (generated on chip) A 1.65V or a decoupling Cap

10 COMPVTH Comparator threshold voltage A 2.4V

11 COMPGND Comparator gnd D 0V

12 COMPVDD Comparator supply D 3.3V

13 ADCGND ADC gnd A 0V

14 ADCGND ADC gnd A 0V

15 ADCVDD ADC supply A 3.3V

16 ADCVDD ADC supply A 3.3V

17 ADCBIAS ADC bias (generated on chip) A 5uA

18 VrefConvertervdd Vref Converter Vdd A 3.3V

19 ANALOGINOUTNEG Mulitslope negative output/ADC negative input A 0.65V � 2.65V

20 ANALOGINOUTPOS Mulitslope positive output/ADC positive input A 0.65V � 2.65V

21 GND Substrate gnd A 0V

22 V165 Vref from Band gap reference A 1.65V or 47nF Cap

23 IREF Iref from Band gap reference A 15uA or 47nF Cap

24 BANDGAPVDD Band gap Vdd A 3.3V

25 BANDGAPGND Band gap gnd A 0V

26 OUTPUTVDD Digital output driver vdd D 1.65V - 3.3V

27 OUTPUTVDD Digital output driver vdd D 1.65V - 3.3V

28 ADCDIGOUTB<3> ADC channel 3 serial negative output D 0V � 3.3V

29 ADCDIGOUT<3> ADC channel 3 serial positive output D 0V � 3.3V

30 ADCDIGOUTB<2> ADC channel 2 serial negative output D 0V � 3.3V

31 ADCDIGOUT<2> ADC channel 2 serial positive output D 0V � 3.3V

32 ADCDIGOUTB<1> ADC channel 1 serial negative output D 0V � 3.3V

33 ADCDIGOUT<1> ADC channel 1 serial positive output D 0V � 3.3V

34 ADCDIGOUTB<0> ADC channel 0 serial negative output D 0V � 3.3V

35 ADCDIGOUT<0> ADC channel 0 serial positive output D 0V � 3.3V

36 OUTPUTGND Digital output driver gnd D 0V � 1.65V

37 GND Substrate gnd A 0V

38 DGND Digital gnd D 0V

39 CLOCKCONFIG Configuration register clock input D 0 � 3.3V

40 CHIPCONFIGIN Configuration input D 0 � 3.3V

41 RESETCONFIG Digital reset input D 0 � 3.3V

42 GND Substrate gnd A 0V

43 VREFSAMPLEHOLD_P Vref sample & hold LVDS positive input D 1.2V ± 175mV

44 VREFSAMPLEHOLD_N Vref sample & hold LVDS negative input D 1.2V ± 175mV

45 SP_P ADC output register load LVDS positive input D 1.2V ± 175mV

46 SP_N ADC output register load LVDS negative input D 1.2V ± 175mV

- 28 -

Hardware setup

Pin# Pin name Description Range
47 ROCLK_P ADC readout clock LVDS positive input D 1.2V ± 175mV

48 ROCLK_N ADC readout clock LVDS negative input D 1.2V ± 175mV

49 DVDD Digital Vdd D 3.3V

50 DVDD Digital Vdd D 0 � 3.3V

51 KHI_N Khi LVDS negative input D 1.2V ± 175mV

52 KHI_P Khi LVDS positive input D 1.2V ± 175mV

53 PHI1_N Phi1 LVDS negative input D 1.2V ± 175mV

54 PHI1_P Phi1 LVDS positive input D 1.2V ± 175mV

55 PHI2_N Phi2 LVDS negative input D 1.2V ± 175mV

56 PHI2_P Phi2 LVDS positive input D 1.2V ± 175mV

57 READ_S_N Slope latch LVDS negative input D 1.2V ± 175mV

58 READ_S_P Slope latch LVDS positive input D 1.2V ± 175mV

59 COMPVETO_N Comp veto LVDS negative input D 1.2V ± 175mV

60 COMPVETO_P Comp veto LVDS positive input D 1.2V ± 175mV

61 COMPRSTB_LOGIC_N Comp resetb LVDS negative input D 1.2V ± 175mV

62 COMPRSTB_LOGIC_P Comp resetb LVDS positive input D 1.2V ± 175mV

63 KHITEST_N Khitest LVDS negative input D 1.2V ± 175mV

64 KHITEST_P Khitest LVDS positive input D 1.2V ± 175mV

65 GND Substrate gnd A 0V

66 ADCGND ADC gnd A 0V

67 ADCGND ADC gnd A 0V

68 ADCVDD ADC supply A 3.3V

69 ADCVDD ADC supply A 3.3V

70 INTRST_N Integrator reset LVDS negative input D 1.2V ± 175mV

71 INTRST_P Integrator reset LVDS positive input D 1.2V ± 175mV

72 START_N Start/Stop LVDS negative input D 1.2V ± 175mV

73 START_P Start/Stop LVDS positive input D 1.2V ± 175mV

74 STRAIGHT_N CDS LVDS negative input D 1.2V ± 175mV

75 STRAIGHT_P CDS LVDS positive input D 1.2V ± 175mV

76 CLAMPR_N ClampR LVDS negative input D 1.2V ± 175mV

77 CLAMPR_P ClampR LVDS positive input D 1.2V ± 175mV

78 CLAMP_N Clamp LVDS negative input D 1.2V ± 175mV

79 CLAMP_P Clamp LVDS positive input D 1.2V ± 175mV

80 ACON_N Clamp LVDS positive input D 1.2V ± 175mV

81 ACON_P Clamp LVDS negative input D 1.2V ± 175mV

82 LVDSRBIAS LVDS receiver bias D 250uA

83 DGND Digital gnd D 0V

84 GND Substrate gnd A 0V

85 GNDINT<0> Ch0 Integrator gnd A 0V

86 GNDAMP<0> Substrate gnd A 0V

87 INPOS<0> Ch0 Amplifier input A 1.65V � 2.15V

88 VDDAMP<0> Ch0 Amplifiers VDD supply A 3.3V

89 VDDINT<0> Ch0 Integrator VDD supply A 3.3V

90 GNDINT<1> Ch1 Integrator gnd A 0V

91 GNDAMP<1> Substrate gnd A 0V

92 INPOS<1> Ch1 Amplifiers input A 1.65V � 2.15V

- 29 -

Hardware setup

Pin# Pin name Description Range
93 VDDAMP<1> Ch1 Amplifiers VDD supply A 3.3V

94 VDDINT<1> Ch1 Integrator VDD supply A 3.3V

95 GNDINT<2> Ch2 Integrator gnd A 0V

96 GNDAMP<2> Substrate gnd A 0V

97 INPOS<2> Ch2 Amplifier input A 1.65V � 2.15V

98 VDDAMP<2> Ch2 amplifiers VDD supply A 3.3V

99 VDDINT<2> Ch2 integrator VDD supply A 3.3V

100 GNDINT<3> Ch3 Integrator gnd A 0V

101 GNDAMP<3> Substrate gnd A 0V

102 INPOS<3> Ch3 Amplifier input A 1.65V � 2.15V

103 VDDAMP<3> Ch3 amplifiers VDD supply A 3.3V

104 VDDINT<3> Ch3 integrator VDD supply A 3.3V

105 GND Substrate gnd A 0

106 DRIVERVDD Driver vdd A 3.3V

107 DRIVERGND Driver gnd A 0V

108 DRIVERGND Driver gnd A 0V

109 BACKSIDEGND Substrate gnd A 0

6.1.2 Signal standards

Since some of the signals operate in the frequency range of f= 1..40MHz and low jitter and
especially low skew is very important for ADC accuracy, the use of a signal standard capable
of supporting these requirements is imperative for the design. Table 6 illustrates, that LVDS
(Low Voltage Differential Signal) is ideal for this application because it is a low voltage, high
speed and differential signal standard and seems to be superior to competing technologies. All
other signals of CRIC-II that aren't timing critical comply to the LVTTL standard.

- 30 -

Table 6: Comparison of signal standards

Advantages LVDS PECL Optics RS-422 GTL TTL
Data rate up to 1Gbps + + + - - -

Very low skew + + + - + -

Low dynamic power + - + - - -

Cost effective + - - + + +

Low noise/EMI + + + - - -

Single power supply/reference + - + + - +

Migration path to low voltage + - + - + +

Simple termination + - - + - +

Wide common-mode range - + + + - -

Process independent + - + + + +

Allows integration w/digital + - - - + +

Cable breakage/splicing issues + + - + + +

Long distance transmission - + + + - -

Industrial temp/voltage range + + + + + +

Hardware setup

6.2 CRIC-II test board
Figure26 shows the CRIC-II test board with all connections to the surrounding test

equipment, which is in first line a PC running special test software to acquire measurements
and to control the onboard test DACs and the FPGA. The FPGA board is connected as a
daughter board via two high density connector.

The two connectors on the top and the bottom of the board for controlling the DACs and to
acquire ADC readout data are connected to a PCI digital I/O card by National Instruments.
This card provides readout data to the measurement software and grants access to the onboard
DACs that are used to generate signal pattern for all channels of CRIC-II.

6.3 FPGA board
The requirements to operate CRIC-II include:
• Test pattern generation, i.e. driving of all acquisition related input signals (LVDS!)
• Real-time control of CRIC via RS-232 connection
• Receiving of measurement related data via RS-232
• Acquisition and deserializing of readout data
• Digital Correction
• Digital Calibration

- 31 -

Figure 26: CRIC-II test board setup

FPGA boardFPGA board
CRIC-IICRIC-II

FPGAFPGA

DACs for testing ADCDACs for testing ADC
RS232 I/O to PCRS232 I/O to PC

PC controlling DACsPC controlling DACs

ADC digital readoutADC digital readout

Hardware setup

To fulfill all listed requirements something really versatile has to be considered.
Microcontrollers drop out because they don't support a fixed timing scheme and only the
faster ones provide the required speed. So programmable logic like FPGAs seem to be the
best solution.

The Spartan-II FPGA series by XILINX offers a very good performance and capacity for a
reasonable price. Furthermore the synthesis software is free for use with FPGA ≤ 200 kGates.
However, when considering larger FPGAs the cost of placement has to be considered. Mostly,
theses FPGAs have a BGA (Ball Grid Array) package, which makes the placement for a
smaller lot size more expensive than the silicon itself. Fortunately there are several
manufacturers who offer FPGA boards with numerous functions. These boards are designed in
a way that they aren't only usable for evaluation of the FPGA but to be included as a part of
the design, e.g. as a daughterboard. For this reason a board from Avnet was used. This board is
with a price of about $250 comparably inexpensive and offers all desired functions:
• Xilinx Spartan or Virtex FPGA with about 200kGates
• LVDS support for at least 38 pairs
• Various connectors
• Onboard PROM (flash type)
• Support of fast (parallel) PC synthesis programming cable
• Display for debugging (LEDs or display)
• Exchangeable crystal oscillator to adjust operation frequency

As the image might reveal, the selected board provides even a lot more features than
essentially wanted. However all wanted features are implemented including a Spartan-IIE
(E=enhanced, due to LVDS support), many connectors and some displays and switches. The
board even embodies a SUB-D9 connector and hence the possibility to synthesize a UART
connection to a PC.

- 32 -

Figure 27: Avnet Spartan-IIE kit

FPGA design implementation

7 FPGA design implementation

7.1 Design overview
Figure28 illustrates the connections between all blocks of the design:

The entire FPGA design is programmed using VHDL
(VHSIC Hardware Description Language, VHSIC=Very High Speed Integrated Circuit).

- 33 -

Figure 28: CRIC-II data flow

4bit (=4channel) serial LVDS
ADC raw data readout

slope information

 Control

CRIC-II

Serial connection RS-232

Spartan-IIE

NI digital
I/O card

Computer

32bit LVTTL digitally
 corrected & calibrated

ADC readout data

4 channel
analog input

stimulus

CRIC-II
test board

DACs

16bit LVDS ADC
control pattern

16bit LVTTL control of switches
CRIC-II

test board
switches

FPGA design implementation

7.2 Timing diagrams
To control CRIC-II during operation the signal timing according to the following diagrams

have to be implemented (see chapter 6.1 for a description of the signals). This pattern
generation is crucial to control the behavior of CRIC both during normal conversion and
calibration. Since the pattern is stored in multiple bit vectors and is accessible from outside
via serial connection (RS-232) it allows a flexible handling and adjustment of the ADC timing
throughout testing and customizing.

A complete conversion of all input channels is finished after 10 µs.
The next diagram shows the relation between readout clock cycles and the number of cycles
that have to be run to finish a complete measurement readout.

- 34 -

Figure 29: CRIC-II timing diagram: Start/stop of conversion cycle

4us 1us

5us

500ns

4.8us

4.8us

300ns

300ns

T= 10 µs

FPGA design implementation

After 28 readout clock cycles a complete measurement is acquired.
 → 28bit = 26bit raw ADC data + 2bit slope information.

To show the signal transitions precisely, the indicated area has to be zoomed:

- 35 -

Figure 31: CRIC-II timing diagram: Zoom area

!

Figure 30CRIC-II timing diagram: Readout clock and data acquisition

300ns

50ns

40MHz clock (28 cycles)

FPGA design implementation

Zoom into figure31 to clarify the delay between the signals:

The illustrated timing diagrams are encoded and stored into the FPGA block-RAM to drive
the signals in realtime and accordingly to control CRIC-II during operation. The calculations
related to memory usage and clock frequency are presented in the following chapter. An in-
depth description of the signal timing can't be given here, because it would need a complete
explanation of the ADC at circuit level which goes beyond the scope of this thesis.

Nevertheless, to give an idea of the function of the timing pattern take a glance at the next
figure. For instance it shows phi1 and phi2 and the related switches that have to be controlled
while passing data through the 1.5bit cells of the ADC.

- 36 -

Figure 32: CRIC-II timing diagram: Delay between signals

200ns

50ns
1us

500ns

500ns

500ns

500ns

500ns

300ns
600ns

1.1us

φ2

φ1

Reset
ADC

Data latched

Figure 33: 1.5bit cell schematic and signal timing of phi1/2

C

C

C

C

C

C

C

C

Vcm

Vcm

Vcm

Vcm

-Vref

Vcm

Latch

Latch
LSB

MSB

φ2

φ2

φ2

φ2

φ2

φ2b

φ2b

φ1b

φ1b

3R

3R

2R VinLV

Vin+

Vin-

FPGA design implementation

7.3 Design considerations
The desired readout sampling rate of fs=100kHz and a timing accuracy of Tacc=25ns

(see chapter 7.2) leads to the following calculations:

Sampling period: T sample=
1
f s
=10 s

For a pattern output with 1bit per cycle it needs a minimum clock frequency of:

 f clock=
1

T acc
=40 MHz

Therefore the amount of memory necessary to hold one signal over a complete period is
determined by:

 n=
T sample

T acc
=400 time slices

7.3.1 Pattern generation:

Using the number of time slices, it is possible to calculate the maximum memory usage
necessary to drive all blocks of CRIC-II (including four channels):

Number of signals to drive: 16 CRIC-II pattern (LVDS) + 16 switches (LVTTL) = 32

Number of bits/cycle: n=32 signals
1cycle

=32bit /25ns

Max. memory usage: Amem=32bit / slice⋅400 slices=12800bit=12.8 kbit

Since the Spartan-IIE architecture includes 14×4096bit block RAM with a variable data width
from 1bit to 16bit, four Block-RAMs are necessary to have parallel access to 32bit per cycle.

7.3.2 Storage of calibration constants

As demonstrated each calibratable ADC cell is associated with two calibration constants.
The memory usage for one set of calibration constants is:

 A cell [n=6..13]=∑
n=5

12

n=68 bit

Memory usage for all calibration constants: 2×68bit = 136bit (minimal)

However, to have access to all constants in the same way, data length is kept constant, i.e. two
block RAMs with a data width of 16bit per block are used to be able to read two adjacent
calibration constant at the same time. Thus, the actual memory usage can be calculated:
 A cell [n=6..13]=8 cells⋅16 bit=128 bit

Memory usage of all calibration constants (of one channel): 2×128bit = 256bit

- 37 -

FPGA design implementation

7.4 State machines
The FPGA implementation comprises five Finite State Machines (FSM) that are all of type
Mealy. There are various additional processes that aren't FSM structured, but the crucial
control functions are maintained by them (see Appendix: Code documentation).
The list below gives an overview:
• SST: Main state machine (serial UART state machine):

Controls the UART communication, i.e. receives commands from serial terminal
(9600,8N1), stores the received pattern into the block RAM, sends data and starts/stops
other processes and state machines
• PST: Pattern generation state machine:

Runs the pattern received and stored by SST. This FSM is controlled by SST and DST.
• CST: Configuration state machine:

Sends 58bit of configuration data received by SST to CRIC-II. This FSM is controlled by
SST and DST.
• DST: Digital Calibration state machine:

Calculates the calibration constants and stores them into the block RAM. This FSM is
controlled by SST.
• FST: Final value state machine:

If calibration is switched on, this FSM calculates the calibrated ADC values based on the
calibration constants. FST isn't controlled by any other state machine, it only triggers on
new readout data.

7.5 Subcomponents
Basically subcomponents are portable and independent of higher layers in hierarchy, i.e. these
code fragments can be instantiated in any other VHDL design. The implemented
subcomponents are hierarchically subordinate, because they're all dependent on the main
architecture:
• ADCDigCorr: Applies Digital Correction and masks out MSB bits during calculation of

calibration constants (see chapter 5.1)
• RAM256x16: Synthesizes RAM consisting of FPGA block RAM cells with 16bit data

and a cell depth of 256 cells
• RAM512x16: Synthesizes RAM consisting of FPGA block RAM cells with 16bit data

and a cell depth of 512 cells
• BinToHex: Transcodes a 16bit binary input vector to an 8bit hexadecimal ASCII

representation according to the position given by pos ranging from 3 down to 0 (0=LSB).
This component is used to process the calculated calibration constants and to make them
available via UART. Therefore this component is only required to control and to check
the calculation during evaluation and debugging of the design.
• MiniUART: Provides all fundamentals to implement a standard UART. MiniUART by

Philippe CARTON is a free IP core and complies to the Wishbone interface standard.

- 38 -

FPGA design implementation

7.6 State charts
On the following pages there's a complete catalogue of state charts for all state machines

and processes of the design. The charts are derived from the FPGA source code using a vector
based diagramming software that supports drawing of UML (Unified Modeling Language)
state charts. This type of state charts represent one of the most convenient and complete ways
to describe a source code.

7.6.1 Overview

To get into the organization of the charts an overview is given below. Indicated by the blue
boxes there are the five FSMs (see chapter 7.4). The red boxes represent the two output
processes to deliver the final ADC output data and to generate the signal pattern to control
CRIC-II. In general, a box stands for a potential state whereas an arrow placed between either
represents a condition or an action associated with the state transition.

- 39 -

Figure 34: State chart overview of all FSMs

SST - main finite state machine (UART)

receive pattern via UART
store pattern into RAM

load pattern

receive 58bit of config data via UART

receive configuration data

run pattern once
run pattern continous

run pattern

distinguish commands
receive #
receive magic word

receive command via UART

switch off calibration

set mode register

switch to raw/cal mode
stop pattern start calculation of calibration constants

send configuration data to CRIC-II

CST

calculate calibration constants
store constants into RAM

DST

correct & calibrate ADC values

FST

generate pattern

PST

STOP

START

output MUX:
 - calibrated data
 - raw & uncalibrated data

signal output process

MUX

erase cal const

config data

START

read data from CRIC-II
assemble readout data for ch #1..4

data acquisition process

raw data

trigger

invoke with config data for cell under calibration

calibrated data

raw data

build averages process

calibrated data

average data

pattern

pattern

output of 32bit sync data

pattern sync output process

cal constants

START / STOP

trigger

FPGA design implementation

7.6.2 Main state machine (SST)

The main state machine having the highest hierarchical level in design is the serial state
machine that receives all commands via UART from the computer and controls most of the
other FSMs.

- 40 -

Figure 35: State chart SST(main) - Detect command

reset UART write enable
reset RAM read flag
reset cmd character index

idle

check UART RxD

new UART RxD

detect magic word

"#"

send answer:
syntax error

else

new UART RxD

magic word else

send answer:
syntax error

detect first char

detect command

check UART RxD

"M"

send answer:
syntax error

run continously

detect command

new UART RxD

run once

detect command

stop pattern

detect command

load pattern

detect command

configuration

detect command

version

detect command

calculate calibration constants

detect command

raw data mode

detect command

no calibration mode

detect command

"S"

"L"

new UART RxD

"S"

"C"

"D"

new UART RxD

"N" "R"
"V"

else

send answer:
syntax error

else

else

else

else

else

else

else

else

ok ok ok ok

ok
ok

ok ok ok

else

FPGA design implementation

Figure 35 illustrates the SST command chain from top to bottom. Every command has to be
initiated by a �#� symbol followed by a Magic word. Subsequently the actual command is
expected. According to the chart branches detecting the first character of a command
(=receiving of a new UART byte), a valid detection can be:

• MRN: Starts continuous acquisition
• RNO: Starts single acquisition
• STP: Stops acquisition
• LDP: Loads ADC control pattern via UART
• CFG: Loads CRIC-II configuration register via UART
• VER: Sends software version
• DEC: Starts calculation of a new set of calibration constants
• NCL: Switches off Digital Calibration and sends only digitally corrected data
• RAW: Switches off Digital Correction and sends raw ADC data

All commands are then either answered with an okay, an error (syntax or checksum), the
request for more data (commands LDP and CFG) or by sending the calculated calibration
constants (DEC). For more detail please see code documentation (Appendix 10.3).

Subroutine: Run Pattern (MRN/RNO)

The following charts are subroutines invoked after the appropriate command is detected
(see figure 35: actions taking place right after the arrows labeled with ok):

Figure 36 and figure 37 show how the pattern state machine (PST) is set to single or
continuos run mode by either resetting or keeping PST's reload state register.

- 41 -

Figure 36: State chart SST - Run pattern
continuously

reset UART write enable
reset cmd character index

idle

send answer: OKAY.

trigger PST
keep PST reload-state

start pattern generation

Figure 37: State chart SST - Run pattern once

reset UART write enable
reset cmd character index

idle

send answer: OKAY.

trigger PST

start pattern generation

reset PST reload-state to idle

stop pattern generation

FPGA design implementation

Subroutine: Load pattern (LDP)

Figure38 shows how the pattern is received via UART and stored into two 16bit block-
RAMs. The length of the pattern is fixed: 12800bit=1600byte plus checksum
(see chapter 7.3.1). The checksum is calculated as the modulo-8 sum of all incoming data
bytes.

- 42 -

Figure 38: State chart SST - Load pattern

reset RAM write flag
reset address counter
reset UART write enable

idle

new UART RxD

set RAM write flag
build checksum

store upper nibble into RAM1

set RAM write flag
build checksum

store lower nibble into RAM1

new UART RxD

build checksum
set RAM write flag

store upper nibble into RAM2

build checksum
set RAM write flag

store lower nibble into RAM2

new UART RxD

new UART RxD

count up address counter

compare checksums

address counter < pattern length

else

send answer: OKAY.

equal

send answer: ERR04
(checksum error)

else

FPGA design implementation

Subroutine: Stop pattern (STP)

The pattern generation (PST) is stopped by
resetting the state reload register to idle, as
indicated in figure 39.

Subroutine: Send software version (VER)

This command sends the software version
currently running on the FPGA (figure 40).

- 43 -

Figure 39: State chart SST - Stop pattern

reset RAM read flag
reset cmd character index
reset UART write enable

idle

send answer: OKAY.

reset PST reload state to idle

stop pattern generation

Figure 40: State chart SST - Send version

reset RAM read flag
reset cmd character index
reset UART write enable

idle

send answer: VERx.y

FPGA design implementation

Subroutine: Load CRIC-II configuration register (CFG)

To load CRIC-II with different configuration sets (see chapter 5.2.2) it is possible to transmit
data via UART to the FPGA and to forward it to CRIC afterwards. Since the configuration
register has a length of 58bit the subroutine shown in figure 41 receives 7×8bit + 2bit =58bit.
The entire set is secured by a modulo-8 checksum. If the transmission is error-free the state
machine responsible for sending configuration sets (CST) is triggered to output the received
data to CRIC.

- 44 -

Figure 41: State chart SST - Record config data from UART

reset RAM write flag
reset UART write enable

idle

send answer: OKAY.

equal

send answer: ERR04
(checksum error)

else

preload index of config reg with 57

Init

new UART RxD

calculate index for register: (config idx) downto (config idx-7)
build checksum

store 8bit of configuration data

config idx > 7

index for register: 1 downto 0
build checksum

store last 2bit

else

config idx = config idx - 8

count down config index

new UART RxD

compare checksums

trigger CST
wait until finished

start sending configuration to CRIC-II

FPGA design implementation

Subroutine: Start calculation of calibration constants (DEC)

Basically the subroutine shown in figure 42 triggers the DEC state machine to calculate
new calibration constants. This includes the following steps:
• Invoke DEC to erase related memory areas storing previous constants
• Invoke DEC to calculate a new set of constants
• Wait until calculation is done
• Convert calibration results using subcomponent BinToHex (see chapter 7.5)
• Send converted calibration constants via UART to external terminal (computer)

Please note, that the last two steps and hence the bigger part of this routine doesn't have a
core-functional background. They're just used to evaluate the ADC.

- 45 -

Figure 42: State chart SST - Start calculation of calibration constants

reset UART write enable
reset cmd character index
reset RAM read flag

idle

send answer: OKAY.

wait until DEC has finished erasing

invoke erasing of memory area storing calibration constants

wait until DEC has finished calculation

start calculation of calibration constants

reset address counter
wait for BinToHex transcoding
set RAM read flag
preload BinToHex digit selector (digit count) with 4
reset BinToHex digit counter

setup sending of calibration constants via UART

wait for UART TxD busy

busy

address(0) / MUX

route lower nibble of RAM to UART

"1" "0"

route higher nibble of RAM to UART

set UART write enable
BinToHex transcoding for digit #(digit count)

read RAM storing 2x16bit cal constants

wait for UART acknowledge

digit counter

else / decrease digit counter

"0"

address = 63

send comma to UART

address < 63

wait for UART acknowledge

Increment address counter

/ load digit counter with 4

FPGA design implementation

Subroutine: Switch to uncalibrated data output mode (NCL)

Figure 43 demonstrates how switching
to uncalibrated data mode works. It's
simply achieved by writing 0x00 to all
constants (by invoking DST). This way
the data flow is kept constant and the
actual calibration state machine (FST)
runs all the time, it just calibrates with
zero correction. Please keep in mind
that even if switched to uncalibrated
mode the output data is still digitally
corrected.

Subroutine: Switch to raw data output mode (RAW)

When data mode is switched to raw
(figure 44), the behavior of the output
process changes completely. Raw data means
uncalibrated and uncorrected output. As
illustrated in chapter 5.1, the amount of data
per period doubles (26bit instead of 13bit)
and accordingly data needs more cycles to be
sent. So basically the ADC readout is just
deserialized and passed through the FPGA.

- 46 -

Figure 43: State chart SST - Switch off calibration

reset UART write enable
reset cmd character index
reset RAM read flag

idle

wait until DEC has finished erasing

invoke erasing of memory area storing calibration constants

send answer: OKAY.

Figure 44: State chart SST - Switch to raw data mode

reset UART write enable
reset cmd character index
reset RAM read flag

idle

send answer: OKAY.

set output mode to "raw"

FPGA design implementation

Subroutine: Send UART strobe signal / acknowledge

These two small subroutines (figure 45) are invoked every time a UART byte is received or
ready to be transmitted, which happens quite frequently. The strobe and acknowledge signals
are routed to the MiniUART subcomponent and are part of the Wishbone signal standard.
They indicate that either received data is accepted or transmit data is ready to be sent.

- 47 -

Figure 45: State chart SST - Send UART strobe / acknowledge

H

hold RxD input
toggle strobe signal
return to previous state

send UART strobe

H

reset answer index counter

send answer init

select answer
check UART busy
set UART write enable
send answer char at index

send answer

busy / retry

wait for UART acknowledge

wait

done / reset UART write enable

load next state

index < 8

else

After every RxD byte received a strobe pulse is sent to UART interface to signal data has arrived.

FPGA design implementation

7.6.3 Pattern state machine (PST)

The pattern FSM operates the output of the CRIC-II control pattern (figure 46). Depending
on the setting made by SST it starts / stops continuous or single generation of signal patterns
previously loaded (command LDP) into the pattern RAM.

7.6.4 Configuration state machine (CST)

CST or configuration state machine sends the configuration data delivered by SST to CRIC.
As shown in figure 47 it furthermore outputs the data and toggles the config clock signal every
cycle until the counter reaches 58bit. So every rising edge one bit is accepted and after
2cycles×58bit=116 cycles CST returns to idle state.

- 48 -

Figure 47: State chart CST - Send configuration data to CRIC-II

reset config counter
reset config clock

idle START / load SST or DST config reg

send bit #count
cfg clock = 0

Send config reg to CRIC-II

check state change by SST or DST

config clock = 1

Count up

count < 58 else

Figure 46: State chart PST - Generate control pattern for CRIC-II

reset address counter
reset RAM read flag

idle

set RAM read flag
reset address counter

init

 reset address counter

reload state change

count up address counter

run

else

address counter = pattern length

check state change by SST or DST

else

START

STOP

FPGA design implementation

7.6.5 Calculation of calibration constants state machine (DST)

To calculate a new set of calibration constants DST has to be invoked by SST. Figure 48
shows the data flow from top to bottom:
• Load configuration register by triggering CST to adjust the ADC to measure points in

transfer function of cell n=6 to 13 (see chapter 5.2.2).
• Toss first measurements until ADC is stable (~1000).
• Take 1024 measurements and add them up.
• Calculate average.
• Branch to either calculate

V1-V2 or V3-V4 or take next
measurement and store
present measurement
temporarily.

• Store calculated calibration
constant.

• Increment configuration
counter:
8 cells to calibrate × 4points
per stage = 32 configuration
sets.

• Repeat until all constants are
determined

If output mode is switched to
uncalibrated (by command NCL)
DST is invoked with flag Clear
RAM set active and all constants
are deleted. This way no
calculations are done at all and
DST returns directly to idle state
after erasing RAM.

- 49 -

Figure 48: State chart DST - Calculation of calibration constants

reset RAM write flag
reset address counter

idle

check state change by SST

set RAM input = 0
count up address counter

clear calibration constants

reset RAM write flag
invoke CST with calibration set #(config counter)

load configuration register

clear cal constants / set RAM write flag

start calibration / reset config counter

count measurements done

toss first measurements

store v1/v3 temporary

set RAM write flag

calculate v3-v4set RAM write flag

calculate v1-v2

else

measurement of v4

measurement of v2

add measured values
count measurements done

take measurement over 1024 averages

assemble RAM input: v1v2 & v3v4
count up address counter
store constants for ch0..3

store cal constants into RAM

count up config counter

config counter

config count < 31

else

FPGA design implementation

7.6.6 FST: Final value state machine:

The calculation of the final ADC values requires one of the most complex FSMs of the
design because it applies calibration on all acquired ADC measurements and uses both
uncorrected and corrected readout data. As described in chapter 5.2 FST reads the stored
calibration constants and applies them according to the current cell's content. Figure 49 shows
that beginning with the LSB cell of all four channels ADC data is calibrated subsequently up
to the MSB. After processing all eight calibratable cells the latch Data Valid is set and FST
returns to idle state.

- 50 -

Figure 49: State chart FST - Applying the Digital Calibration

reset RAM write flag
reset address counter
preload ADC cell counter

idl

check ADC readout latch

set RAM read flag

preload cell #(cell count) ch #0

latch: ADC readout complete

read calibration constants from RAM

correct cell #(cell count) ch #0

cell = ?

substract (v1-v2) add (v3-v4) no correction

else
"10" "00"

set RAM read flag

preload cell #(cell count) ch #1

read calibration constants from RAM

correct cell #(cell count) ch #1

cell = ?

substract (v1-v2) add (v3-v4) no correction

else
"10" "00"

set RAM read flag

preload cell #(cell count) ch #2

read calibration constants from RAM

correct cell #(cell count) ch #2

cell = ?

substract (v1-v2) add (v3-v4) no correction

else
"10" "00"

set RAM read flag

preload cell #(cell count) ch #3

read calibration constants from RAM

correct cell #(cell count) ch #3

cell = ?

substract (v1-v2) add (v3-v4) no correction

else
"10" "00"

cell counter < 8 / increment

set latch data valid

else

FPGA design implementation

7.7 Design process and synthesis with Xilinx ISE
The entire design was compiled and synthesized with the free ISE WebPack synthesis

software by Xilinx. It is restricted to CPLD and FPGAs with a maximum of 200kGates. For
all larger FPGAs a commercial version has to be used that isn't free of charge. The ISE
WebPack comprises the following tools:
• HDL & Abel editor (not used because not very good)
• Constraint editor PACE to assign resources like pins and hardware properties and to

define area constraints
• Schematic editor to edit the compiled RTL logic
• Timing driven place and route synthesizer
• Floorplanner to check and modify resource assignments
• Simulator (very light version, only usable for small designs)
• IMPACT to access JTAG chain and to program the FPGA and the associated

Flash PROM

- 51 -

Measurements

8 Measurements

8.1 ADC specifications
Basically when looking at ADCs two characterizing parameter sets have to be discussed:

The first are the AC domain specifications like SNR, SINAD, ENOB, etc., which aren't of
interest in this context because they look at the ADC in terms of repeatability and not
accuracy. The described methods affect accuracy , so the determination of DC domain
specifications like differential and integral linearity are the most interesting parameters that
have been measured extensively.

8.1.1 INL: Integral Non-linearity

The ADC's INL error is described as the deviation of an actual transfer function from a
straight line (best fit line). Thus, the INL error magnitude directly depends on the position
chosen for this straight line.

The INL graph for an ADC displays the analog input (or input DAC value) on the x-axis and
the digital output on the y-axis and is measured in LSB or percentage of full scale.

- 52 -

Figure 50: Integral Non-Linearity

ADC input voltage
[Vref]

ADC output
[Dout]

best fit

00000000

1 2 3 4 5 6 7 8

actual

01110000

01110010
INL=-2

INL=1.5
11010010
11010011

Measurements

8.1.2 DNL: Differential Non-linearity

DNL error is defined as the difference between an actual step width and the ideal value of
one LSB. For an ideal data converter, in which the differential non-linearity coincides with 0
LSB, each analog step equals 1 LSB.

1 LSB=
V FS

2n with VFS as the full-scale range and n as the ADC resolution

As shown in figure 50 the DNL graph for an ADC displays the analog input on the x-axis and
the digital output on the y-axis and is measured in LSB. To guarantee no missing codes and a
monotonic transfer function an ADC's DNL must be greater than -1LSB.

- 53 -

Figure 51:Differential Non-Linearity

ADC input voltage
[Vref]

000

001

010

011

100

101

110

111

1 2 3 4 5 6 7 8

DNL=-0.25

DNL=0

DNL=-0.25

DNL=0

DNL=0.25

DNL=0

idealactual

ADC output
[Dout]

Measurements

8.2 INL measurements
To finally proof the effect of the implemented Digital Correction and particularly the

Digital Calibration numerous measurements were taken. Figure 53 shows an INL
measurement without applying calibration, whereas figure54 shows a measurement with
calibration applied. The DAC values in both measurements refer to the onboard test DACs
that are set to a range around half full-scale (see chapter 6.2).

Now with calibration applied, full scale = 13bit = 8192.

Conclusion: Improvement of about eight LSB!

- 54 -

Figure 52: INL measurement uncalibrated

18000 20500 23000 25500 28000 30500 33000 35500 38000
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

DAC value

AD
C

 c
ou

nt
s

Figure 53: INL measurement calibrated

18000 20500 23000 25500 28000 30500 33000 35500 38000
-1,75
-1,5

-1,25
-1

-0,75
-0,5

-0,25
0

0,25
0,5

0,75
1

1,25
1,5

1,75

DAC value

A
D

C
 c

ou
nt

s

Measurements

8.3 DNL measurement
The following diagram shows the averaged DNL over the entire ADC input range:

Figure 54 is generated by averaging over 10000 measurements per point (→ADC input value).
The input voltage consists of the DAC voltage (generated by onboard DAC) overlaid by a
sawtooth waveform with fsaw >> fs (sampling frequency) and an amplitude of 1 LSB:

Vin = VDAC + vsaw (generated by external frequency synthesizer).
So VDAC is incremented linearly while vsaw is kept at a constant frequency and amplitude. The
frequency fsaw must not be a multiple of the sampling frequency, otherwise there wouldn't be
a uniform distribution of all input values in the range of the current DAC setting plus 1 LSB.

Conclusion

The maximum DNL is about 0.4 LSB with an average deviation of about 0.1 to 0.2 LSB,
which are quite typical magnitudes for pipeline ADCs.

- 55 -

Figure 54: DNL measurement

0 5000 10000 15000
-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

13bit+1bit ADC input value

L
S

B

Measurements

8.4 Noise measurement

Figure 52 shows a measurement of 2000 digitally corrected and calibrated ADC output values
of channel 2. Input voltage is DC and around mid-range (~4096= full-scale/2). Since this
measurement aims to find out about the ADC output dispersion, the exact input voltage isn't
of central interest. Using the ADC output values it's possible to calculate the associated
statistical parameters:

Average Dout: µ0 = 4102.92 LSB
Standard deviation: σ = 2.28 LSB

Conclusion

Even at room temperature (25°C) the noise level is comparably low.

- 56 -

Figure 55: Noise measurement

0 250 500 750 1000 1250 1500 1750 2000
4090

4095

4100

4105

4110

4115

Measurement #

A
D

C
 o

u
tp

u
t

Measurements

8.5 Statistical evaluation of the calibration constants
Since the calculated calibration constants should only be influenced by environmental

factors like temperature and noise in general, a statistical evaluation of many (or at least some)
calculation runs could be interesting. The following plot displays the accumulated standard
deviation over ten calibration runs. It is calculated by specifying the distance of two adjacent
standard deviations of each stage for all cells and channels (cell1=MSB):

Figure56 illustrates that a small error from one of the first LSB cells just propagates up to the
MSB cell and hence doubles with every stage.

Conclusion

Apart from channel 3 the statistic is completely inconspicuous, assuming that V1-V2 and V3-V4

have about the same magnitude, what they actually do. Even for the higher deviation of
channel 3 there's a reasonable explanation: Since additional test equipment was connected to
this particular input at the time when the measurement was taken, additional noise was
introduced into the system. Thus, the uncertainty of calculating stable constants for channel 3
increased.

- 57 -

Figure 56: Standard deviation of calibration constants

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8
0

5

10

15

20

25

30

Ch#0
Ch#1
Ch#2
Ch#3

S
ta

n
d

a
rd

 d
e

vi
a

tio
n

 [
L

S
B

]

Conclusion and future upgrades

9 Conclusion and future upgrades

9.1 Meeting the specs
After about six month of work on CRIC-II the main goal to realize an INL of ± 1 LSB at

room temperature was reached . The synthesized VHDL code for driving and controlling the
CRIC-II signals plus Digital Correction and Calibration was programmed into a Flash PROM
and works now independently of the development system. Since CRIC-II is supposed to
operate in space, one of the next steps will be to test the design for radiation hardness and to
characterize the system in a cold environment by cooling it off with nitrogen.

9.2 The way to CRIC-III
Further development will be done to improve ADC accuracy and to reduce overall system
noise. The proposed VHDL design is supposed to be implemented hard-wired on-chip as a
part of CRIC-III and thus, will hopefully process the cosmological data of SNAP one day.

- 58 -

Appendix

10 Appendix

10.1 VHDL code documentation

10.1.1 Pattern generation � Calibration � Main Control

- 59 -

Appendix

- 60 -

Appendix

- 61 -

Appendix

- 62 -

Appendix

- 63 -

Appendix

- 64 -

Appendix

- 65 -

Appendix

- 66 -

Appendix

- 67 -

Appendix

- 68 -

Appendix

10.1.2 ADC Digital Correction

- 69 -

Appendix

10.1.3 Binary to Hex Transcoder

- 70 -

Appendix

10.1.4 RAM 256x16

- 71 -

Appendix

10.1.5 RAM 512x16

- 72 -

Appendix

10.1.6 Mini UART

- 73 -

Appendix

10.2 Example: Synthesis of Digital Correction
To give an idea of the design process the following chapter describes the schematic of a

synthesized RTL logic and the corresponding VHDL code (see chapter 5.1)
On top of figure57 there's a multiplexer selecting the uncorrected ADC input according to

the cell[2 downto 0] mask selection (see chapter 10.1 for more details). The binary
combinations for the cell signal are ranging from [000] to [111]. Since cell[3] basically stands
for an on/off switch for masking, it's compiled as control input of the subsequent MUX to
either select unmasked or masked data. The output of this stage is connected to a simple full-
adder to do the essential Digital Correction by inter-stage summing of the ADC stages. The
last stage of any synchronous components is always an output buffer.

- 74 -

Figure 57: Schematic of Digital Correction

ADCin(7)
ADCin(6)
ADCin(5)
ADCin(4)
ADCin(3)
ADCin(2)
ADCin(1)
ADCin(0)
ADCin(9)
ADCin(8)

ADCin(11)
ADCin(10)

ADCin(13)
ADCin(12)

ADCin(15)
ADCin(14)

ADCin(17)
ADCin(16)

ADCin(19)
ADCin(18)

ADCin(21)
ADCin(20)

cell(2..0)
cell(3..0)
ADCin

CLK
Reset

M
U
X

sel

pack

MUX
 ADCcorr

 (12..0)BUF

Appendix

Following there's the corresponding VHDL implementation:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY ADCDigCorr IS
 port (
 reset : IN std_logic;
 clk : IN std_logic;
 adc_in : IN std_logic_vector (24 DOWNTO 0);
 cell : IN std_logic_vector (3 DOWNTO 0);
 adc_corr : OUT std_logic_vector (12 DOWNTO 0)
);
END ADCDigCorr;

ARCHITECTURE Arch_ADCDigCorr OF ADCDigCorr IS
BEGIN
 Process_ADCDigCorr: PROCESS (clk,reset)
 VARIABLE adc_m : std_logic_vector (24 DOWNTO 0):= adc_in;
 BEGIN
 IF reset = '1' THEN
 adc_corr <= "0000000000000"; -- mask out adc_in:
 ELSIF clk'event AND clk='1' THEN -- cell 0 => keep adc_in(7 downto 0)
 -- cell 7 => keep adc_in(21 downto 0),...
 CASE cell is
 WHEN "0111"=> adc_m := "000" & adc_in(21 DOWNTO 0); -- mask out 1st MSB cell
 WHEN "0110"=> adc_m := "00000" & adc_in(19 DOWNTO 0); -- 1st & 2nd MSB cell
 WHEN "0101"=> adc_m := "0000000" & adc_in(17 DOWNTO 0); -- etc...
 WHEN "0100"=> adc_m := "000000000" & adc_in(15 DOWNTO 0);
 WHEN "0011"=> adc_m := "00000000000" & adc_in(13 DOWNTO 0);
 WHEN "0010"=> adc_m := "0000000000000" & adc_in(11 DOWNTO 0);
 WHEN "0001"=> adc_m := "000000000000000" & adc_in(9 DOWNTO 0);
 WHEN "0000"=> adc_m := "00000000000000000" & adc_in(7 DOWNTO 0);
 WHEN OTHERS=> adc_m := adc_in; -- no mask at all, only digital correction
 END CASE; -- v-- intercellular addition: LSB+MSB
 -- v-- fulladder with carry
 adc_corr <= (adc_m(24) & adc_m(22) & adc_m(20) & adc_m(18) & adc_m(16)
 & adc_m(14) & adc_m(12) & adc_m(10) & adc_m(8) & adc_m(6)
 & adc_m(4) & adc_m(2) & adc_m(0)) +
 ('0' & adc_m(23) & adc_m(21) & adc_m(19) & adc_m(17) & adc_m(15)
 & adc_m(13) & adc_m(11) & adc_m(9) & adc_m(7) & adc_m(5)
 & adc_m(3) & adc_m(1));
 END IF;
 END PROCESS Process_ADCDigCorr;
END Arch_ADCDigCorr;

- 75 -

Appendix

10.3 List of figures
Figure 1: SNAP satellite..6
Figure 2: CCD shift registers..7
Figure 3: CCD charge coupling...7
Figure 4: CRIC-II overview..8
Figure 5: CRCIC-II photo...9
Figure 6: Noise sources...11
Figure 7: Flicker noise...11
Figure 8: CCD signal & double correlated sampling..13
Figure 9: ADC speed vs. resolution..15
Figure 10: Pipeline ADC with 1bit per stage..16
Figure 11: Transfer function 1bit cell..17
Figure 12: Transfer function 1bit cell * offset...17
Figure 13: ADC missing codes...18
Figure 14: structure n-bit ADC...18
Figure 15: CRIC-II 13bit Pipeline structure..20
Figure 16: Transfer function 1.5bit cell...21
Figure 17: Digital Correction..22
Figure 18: Calibrated output Dout up to stage n-1 with G=2...22
Figure 19: Calibration with G<2 resulting in Missing Code...23
Figure 20: Calibration with G>2, normal operation..24
Figure 21: Calibratable cells...24
Figure 22: Transfer points to measure...25
Figure 23: Calibration 1st step..26
Figure 24: Calibration 2nd step...26
Figure 25: CRIC-II signals..27
Figure 26: CRIC-II test board setup..31
Figure 27: Avnet Spartan-IIE kit...32
Figure 28: CRIC-II data flow..33
Figure 29: CRIC-II timing diagram: Start/stop of conversion cycle...34
Figure 30CRIC-II timing diagram: Readout clock and data acquisition...................................35
Figure 31: CRIC-II timing diagram: Zoom area...35
Figure 32: CRIC-II timing diagram: Delay between signals..36
Figure 33: 1.5bit cell schematic and signal timing of phi1/2..36
Figure 34: State chart overview of all FSMs ..39
Figure 35: State chart SST(main) - Detect command...40
Figure 36: State chart SST - Run pattern continuously...41
Figure 37: State chart SST - Run pattern once..41
Figure 38: State chart SST - Load pattern..42

- 76 -

Appendix

Figure 39: State chart SST - Stop pattern..43
Figure 40: State chart SST - Send version..43
Figure 41: State chart SST - Record config data from UART..44
Figure 42: State chart SST - Start calculation of calibration constants.....................................45
Figure 43: State chart SST - Switch off calibration..46
Figure 44: State chart SST - Switch to raw data mode...46
Figure 45: State chart SST - Send UART strobe / acknowledge...47
Figure 46: State chart PST - Generate control pattern for CRIC-II...48
Figure 47: State chart CST - Send configuration data to CRIC-II..48
Figure 48: State chart DST - Calculation of calibration constants..49
Figure 49: State chart FST - Applying the Digital Calibration...50
Figure 50: Integral Non-Linearity...52
Figure 51:Differential Non-Linearity..53
Figure 52: INL measurement uncalibrated..54
Figure 53: INL measurement calibrated..54
Figure 54: DNL measurement...55
Figure 55: Noise measurement..56
Figure 56: Standard deviation of calibration constants...57
Figure 57: Schematic of Digital Correction..74

- 77 -

Appendix

10.4 List of Tables
Table 1: ADC comparison...14
Table 2: Therm2Bin transcoding...21
Table 3: CRIC-II configuration register..25
Table 4: Measurement sequence...25
Table 5: Calibration decision table..26
Table 6: Comparison of signal standards..30

10.5 Further information
See my website at http://www-eng.lbl.gov/~mredelst/

- 78 -

Appendix

10.6 Glossary

Aliasing

Visible artifacts resulting from sampling a function with a frequency less of half the highest
frequency (the Nyquist frequency) present in the transfer function (e.g. of an ADC).

ASIC

Application Specific Integrated Circuit

CCD

Charge Coupled Device, see chapter 1.2

CDS

Correlated Double Sampler, see chapter 2.2

CRIC

CCD Readout IC, see chapter 1.3

DNL

Differential Non Linearity, see chapter 8.1.2

Digital Correction

see chapter 5.1

Digital Calibration

see chapter 5.2

Finite State Machine

A finite state machine (FSM) is an abstract machine that has only a finite, constant amount of
memory. The internal states of the machine carry no further structure. It can be represented
using a state chart. There are finitely many states, and each state has transitions to states.
There is an input string that determines which transition is followed. Some transitions may be
from a state to itself (loop).

FPGA

Field Programmable Gate Array:
An integrated circuit using a logic network (gate array) that can be programmed after the
device is manufactured. An FPGA consists of an array of logic elements, either gates or
lookup table RAMs, flip-flops and programmable interconnect wiring.

- 79 -

Appendix

Gray Code

A binary sequence with the property that only one bit changes between any two consecutive
elements. Therefore the code has a Hamming distance of one.

Hamming distance

The Hamming distance is the number of positions in two strings of equal length for which the
corresponding elements are different. It measures the number of substitutions required to
change one into the other. It was named after Richard Hamming.

INL

Integral Non Linearity, see chapter 8.1.1

LVDS

Short for Low Voltage Differential Signaling, a low noise, low power, low amplitude method
for high-speed (gigabits per second) data transmission over copper wire (see chapter 6.1.1).

LVTTL

Low Voltage Transistor-Transistor Logic, common I/O standard for chip to chip interfaces.

Mask

A bit pattern used to control the retention or elimination of portions of another bit pattern by
using the AND or OR operation.

Mealy machine

A Mealy machine is a finite state machine where the outputs are determined by the current
state and the input. In contrast, the output of a Moore finite state machine depends only on the
current state and does not depend on the current input.

Nyquist zone

A Nyquist zone defines the frequency range of a signal that can be sampled by an ADC
operating at a specific sampling rate.

RTL

Register Transfer Level -- A level of abstraction for HDL code; it generally indicates that the
HDL code is synthesizable.

Synthesis

Process of compiling and building a logic representation from an HDL code on hardware level
using logic gates (→FPGA).

Thermometer Codes

A binary sequence with the property that the bits are switched on sequentially just like the
temperature expands the liquid in an analog thermometer:
0000→0001→0011→0111→1111

- 80 -

Appendix

UART

Short for Universal Asynchronous Receiver-Transmitter, the UART is a computer component
that handles asynchronous serial communication. Every computer contains a UART to manage
the serial ports, and some internal modems have their own UART.

UML

Unified Modeling Language is a non-proprietary, third generation modeling and specification
language. It can be used for modeling hardware (engineering systems) and is commonly used
for business process modeling and organizational structure modeling. UML is an open method
used to specify, visualize, construct and document the artifacts of an object-oriented software-
intensive system under development. It's ideal for use with state charts.

VHDL

VHSIC Hardware Description Language, VHSIC=Very High Speed Integrated Circuit
VHDL was originally developed at the behest of the US Department of Defense in order to
document the behavior of the ASICs that supplier companies were including in equipment.
That is to say, VHDL was developed as an alternative to huge, complex manuals which were
subject to implementation-specific details.

- 81 -

Appendix

10.7 Acknowledgments
The work described in this thesis has been developed in the time between April and October

2004 in the Lawrence Berkeley Labs. The thesis was published in January 2005. Among many
other people who inspired me before and during this time I particularly want to thank some
people for supporting me:
Thanks to Prof. Dr. Bantel for making the contact to the LBL and for sending me there.
Thanks to Chris Bebeck for being patient when explaining new matter and for many jelly
beans. Thanks to Maximilian Fabricius for being a smart colleague, a very good friend and
for joining me in being coffee addicted. Thanks to Armin Karcher for introducing me to the
Lab and the Bay Area and for providing guidance. Thanks to William Kolbe for having great,
inspiring and relaxing talks and for spending unforgettable times in San Francisco. Thanks to
the LBL for being an excellent place to work and for giving me the SPOT Award for my
work. Thanks to Henrik von der Lippe for an excellent project management and for sharing
his knowledge. Thanks to Julia Lundy for improving my English and for having a fabulous
time. Thanks to Joao Pequenao for sharing numerous relaxing hours, for cracking many stale
jokes and for making people eat things they didn't want to eat. Thanks to Prof. Dr. Sapotta
for being a very good professor at the University of Applied Sciences in Karlsruhe and for
giving motivation to keep on studying. Thanks to Jean-Pierre Walder for making the link to
the core of CRIC-II (I know you were right!) and for supporting Max and me while debugging
the design. You all made it possible!

- 82 -

Appendix

10.8 References
[1] Yun Chiu, Cheongyuen W. Tsang, Borivoje Nikolic´, Paul R. Gray

Least Mean Square Adaptive Digital Background Calibration of Pipelined ADCs
IEEE Transactions on Circuits and Systems: Vol. 51, No. 1, January 2004

[2] S.Y. Chuang, T. L. Sculley
A Digitally Self-Calibrating 14-bit 10-MHz CMOS Pipelined A/D Converter
 IEEE JSSC, Vol. 37, No. 6, June 2002

[3] Mark Ferriss, Joshua Kang
A 10 bit 100MHz pipeline ADC
University of Michigan, 598 design project, 2004

[4] R.I. Hornsey
Noise in Image Sensors
University of Waterloo, March 1999

[5] G. R. Hopkinson, D. H. Lumb
Noise reduction techniques for CCD image sensors
 X-ray Astronomy Group, University of Leicester, June 1982

[6] Walt Kester, James Bryant
ADC Architectures
Analog Devices, March 2004

[7] Walt Kester
Digital Video and Display Electronics
Analog Devices, March 2004

[8] Walt Kester
Sampling Theory
Analog Devices, March 2004

[9] Walt Kester
Testing ADCs
Analog Devices, March 2004

[10] Hae-Seung Lee
A 12-b 600ks/s Digitally Self-Calibrated Pipelined Algorithmic ADC
IEEE JSSC, Vol. 29, No 4, April 1994

[11] Benoit Provost, Edgar Sánchez-Sinencio
A Practical Self-Calibration Scheme - Implementation for Pipeline ADCs
IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, April 2004

[12] Defining the Specifications
 Dan Sheingold, Walt Kester
 Analog Devices, March 2004
[13] Jean Pierre Walder

A 13bit Pipeline ADC
Lawrence Berkeley Lab, February 2004

[14] Jean Pierre Walder
The 1.5bit cell
Lawrence Berkeley Lab, January 2004

- 83 -

	Title
	Abstract
	Table of Contents
	Introduction
	SNAP - SuperNova / Acceleration Probe
	CCD
	CRIC-II overview
	Core specifications

	Analog signal processing
	Noise sources
	Output amplifier noise
	Reset noise
	Shot Noise
	Conclusion

	Correlated Double Sampling (CDS)

	Typical ADC architectures
	Comparison of current ADC technologies
	ADC speed versus resolution
	Advantages of Pipeline ADCs

	Pipeline ADCs
	The ideal Pipeline ADC
	Architecture
	The 1bit cell

	The non-ideal Pipeline ADC
	Conversion errors
	Architecture
	Correction logic
	Conclusion

	CRIC-II digital block
	Architecture
	The 1.5bit cell
	Digital correction logic

	Digital error correction methods
	Digital Correction of 1.5bit cells in a 13bit ADC
	Digital Calibration of 1.5bit cells in a 13bit ADC
	Theory
	Calibration process of CRIC-II

	Hardware setup
	CRIC input and output signals
	Pin assignment
	Signal standards

	CRIC-II test board
	FPGA board

	FPGA design implementation
	Design overview
	Timing diagrams
	Design considerations
	Pattern generation
	Storage of calibration constants

	State machines
	Subcomponents
	State charts
	 Overview
	Main state machine (SST)
	Pattern state machine (PST)
	Configuration state machine (CST)
	Calculation of calibration constants state machine (DST)
	FST: Final value state machine

	Design process and synthesis with Xilinx ISE

	Measurements
	ADC specifications.
	INL: Integral Non-linearity
	DNL: Differential Non-linearity

	INL measurements
	DNL measurement
	Noise measurement
	Statistical evaluation of the calibration constants

	Conclusion and future upgrades
	Meeting the specs
	The way to CRIC-III

	Appendix
	VHDL code documentation
	Pattern generation . Calibration - Main Control
	ADC Digital Correction
	Binary to Hex Transcoder
	RAM 256x16
	RAM 512x16
	Mini UART

	Example: Synthesis of Digital Correction
	List of figures
	List of Tables
	Further information
	Glossary
	Acknowledgments
	References

